These trees lean towards to equator!

When you walk along a line of Cook pines (Araucaria columnaris), you might think that a tornado just passed. Most trees of this coniferous species are leaning in the same direction. Researchers from the California Polytechnic State University also noticed this. In fact, travelling around the world (something that scientists tend to do), they started seeing in pattern. In their paper, published in Ecology, they write:

We first noticed A. columnaris leaning south in California and Hawaii, where it is a common horticultural plant. Our observation from Australia, though, suggested that A. columnaris lean north in the southern hemisphere.

This observation triggered their curiosity. They sampled 256 trees on five continents and recorded the orientation of their lean. And it turned out that they ‘uncovered a surprisingly consistent pattern of hemisphere-dependent directional leaning in A. columnaris.’ Indeed, in the northern hemisphere, trees lean south, and in the southern hemisphere they lean north. But why they do it? Nobody knows…

cook pine.jpg

 

How to survive the tsunami of scientific literature

As a scientist, it is important to keep up with the latest developments in your field. One way of doing this is by reading the most recent scientific papers. But in the constant bombardment of papers, it can be tricky to choose which ones to read and which ones to ignore. In this blog post, I will quickly guide you through my system.

My way for dealing with the mind-boggling amount of scientific literature encompasses three steps:

  1. Look for scientific papers and save PDFs based on title
  2. Read abstract, summarize and classify
  3. READ!

1. Look for scientific papers

The first step is quite straightforward. Before you can read papers, you have to find them. You can do this by visiting the websites of journals in your field and browse through the contents of their latest issues. I mostly have a look at journals such as Evolution, Journal of Evolutionary Biology, Biological Reviews, Current Biology, ect. In addition, you can subscribe to the newsletters of these journals. Another possibility is creating a keyword alert using websites such as Scopus or Web of Science. For example, I receive weekly mails with papers that include the keywords “introgressive hybridization”.

Based on the title (and sometimes the abstract if the title is not very informative), I save a PDF of the paper on my laptop. I link this PDF to a reference in the software EndNote. In Endnote, I have created several folders to store the newly found papers. The first folder – Avian Hybrids – contains papers that are relevant for my website on Avian Hybridization, where I gather the scientific literature on (you guessed it!) avian hybrids. The second folder – General Papers – contains the rest of the papers that I find online.

2. Read abstract, summarize and classify

Next, I have a look at the abstract. While I do this, I open another program: Evernote. This software can be seen as a giant electronic notebook. Instead of wasting paper, I prefer to save my notes digitally. In Evernote, I have created a notebook called ‘Paper Administration’. Every time I dive into my pond of scientific literature, I take some notes. I briefly summarize the paper based on the abstract and (if applicable) write down some additional comments or thoughts. For example, this paper could be interesting for idea X or this papers reminds me of another paper.

Based on the abstract, I decide whether or not I want to read the whole paper. If yes, I transfer it to a new folder, conveniently called ‘Read whole paper’. If no, I delete the paper from the list and it is saved in my library. One of my fears was forgetting about papers. A paper might not be relevant at the moment, but in a couple of months I might need it. By taking some notes in Evernote, I keep my ideas stored somewhere (instead of my brain, which is not foolproof…). Later on, I can easily search through my notes with the very handy search function in Evernote.

3. READ!

And finally, I read the papers in my folders ‘ Avian Hybrids’ and ‘Read whole paper’ , when I find the time…

PhD read

I hope this post was useful. If you have any questions or suggestions, don’t hesitate to contact me. I will try to read your mail as soon as possible! 😉

Can Stray Golf Balls Influence Duck Evolution?

An evolutionary perspective on ducks getting hit by golf balls. Fore!

Have a look at the video in the following link:

http://www.golf.com/extra-spin/2017/05/10/watch-man-hits-kills-duck-drive-tpc-sawgrass

You can see how a golfer tees off and hits an unsuspecting duck clean out of the air. From an evolutionary point of view, this raises the question whether stray golf balls could influence the evolution of ducks. Evolution mainly operates through natural selection, that is differential survival (and reproduction) of individuals. For example, if bigger individuals have a higher chance of survival, they will produce more offspring, and the next generation will exhibit a marked increase in size (given that offspring inherit the large size from their parents).

So, could stray golf balls provide a new selection pressure in duck evolution? Probably not, because the chance of getting hit by a golf ball is too low to have any significant effect on the duck population. Hitting a duck with a golf ball can be regarded as a random event. Somewhat similar to the process of genetic drift where some genetic variants increase or decrease in frequency at random. Here, the duck has been randomly removed from the gene pool by a golf ball. This accident may be dubbed ‘genetic drive’ (the golfer performed a so-called drive: the long distance shot played from the tee box).

I do wonder if this swing also counts as a birdie

'Birdie.'

Evidence that ancient reptiles were extremely happy

Today I was skimming through some scientific papers on my ‘to read’ list. At the end of a Scientific American paper by Jonathan B. Losos, entitled Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism, an old drawing filled in the empty space below the reference list. Here is the drawing with the caption:

Ancient Reptiles

Judging from the blissful smile on the faces of these ancient reptiles, they were extremely happy to be alive. Very convincing (although indirect) evidence that life in these times was more relaxed than nowadays! Which reminds me, I should continue finishing my ‘to read’ list…

Code Orange for the Bengal Tiger!

Genetic study highlights challenging conservation of the Bengal Tiger in India.

India not only houses a significant proportion of the human population, it is also home to roughly 70% of the global tiger population. The most numerous subspecies, the Bengal Tiger (Panthera tigris tigris), roams in six areas across India. A study in the scientific journal PLoS ONE assessed the genetic architecture of a population in one of these areas, the Terai Arc Landscape (TAL), a stretch of habitat along the foothills of the Himalayas. The results, based on 13 microsatellites,  are not very reassuring for this endangered cat…

Bengal_Tigress
Bengal Tiger (by Kaksbhatt, from Commons Wikimedia)

First, the genetic diversity of Bengal tigers in TAL is lower compared to previous studies. Small populations often exhibit low levels of genetic diversity and are expected to lose more diversity due to genetic drift. This continuous reduction in genetic diversity might make it impossible for these populations to adapt to rapidly changing circumstances.

In addition, the level of inbreeding among these tigers is relatively high (mean inbreeding coefficient = 0.23, for the formula fetishist among the readers). Inbreeding, the mating between close relatives, can have devastating health effects (just look at the royal families in Europe) and often leads to a further degradation in genetic diversity.

Finally, the genetic analysis uncovered two distinct populations connected by moderate gene flow. These two populations, referred to as Corbett Tiger Reserve (CTR) and Rajaji Tiger Reserve( RTR), are connected by a corridor (very originally dubbed the Corbett-Rajaji corridor). The genetic differentiation between CTR and RTR suggests that this corridor is under severe pressure by human disturbance. The loss of another corridor has previously led to the extinction of a western tiger population in RTR. The Corbett-Rajaji corridor needs to be preserved, certainly a challenge in this area of India, which has a higher population density (over 500 people per km2) compared to the Indian average (300 people per km2).

One solution is the relocation of human settlements. For example, the Gujjars, a pastoralist community in TAL, were relocated to the east, creating more room for the tigers. But can the Indian government convince people to leave their homes for a striped cat? The locals certainly wouldn’t move for an insignificant songbird, meaningless moth, or trivial termite. In this respect, tigers can function as so-called ‘umbrella species’, which is a species selected for making conservation-decisions, because protecting these species will indirectly protect other species in their ecological community.

umbrella species

References

Singh, S., Aspi, J., Kvist, L., Sharma, R., Pandey, P., Mishra, S., Singh, R., Agrawal, M., & Goyal, S. (2017). Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris) in a human-dominated western Terai Arc Landscape, India PLOS ONE, 12 (4) DOI: 10.1371/journal.pone.0174371

Break a leg!

What to do when your prey refuses to be swallowed? Eurasian Spoonbills (Platalea leucordia) in Hungary have a solution…

While browsing through the contents of the latest Waterbirds issue, my attention was caught be a short article. Csaba Pigniczki from the Kiskunság Bird Protection Society in Hungary reports a unique prey handling tactic by the Eurasian Spoonbills (Platalea leucordia). In the abstract he paints a nice picture of the behavior:

A unique prey handling behavior of the Eurasian Spoonbill (Platalea leucorodia) was observed at Büdös-szék, a soda pan near Pusztaszer, Hungary, on 13 May 2007. The observed individual caught a large marsh frog (Pelophylax ridibundus), but was unable to swallow it immediately because the marsh frog kept spreading its limbs as a defensive behavior. Using its lower and upper mandibles, the Eurasian Spoonbill exerted a series of pressing movements to the head and body of the marsh frog, and then grabbed each limb with its bill and shook the marsh frog under the water to break the limbs one by one. Finally, when all the limbs had been broken, the bird was able to swallow the large marsh frog. This prey handling took approximately 10 min.

 

spoonbill

 

Reference

Pigniczki, C. (2017). Unique Prey Handling of Eurasian Spoonbill
Waterbirds, 40 (1), 74-76 DOI: 10.1675/063.040.0111

Wandering in Washington – Part 1: The Tourist

What do you do when you are between jobs? I decided to travel to the US and spend two weeks in Washington D.C. I arranged several meetings with scientists working at the Smithsonian Museum and reserved some days for ‘touristy’ activities. The outcome? Several new contacts (including a collaboration) and many adventures…

 

Saturday 25th of February

My girlfriend got accepted to a statistics course organised by the Smithsonian Mason University in Washington, DC. Because my postdoc will start in a couple of months, I decided to accompany her. So, on Saturday 25th of February, we boarded the plane in Amsterdam. The flight was enjoyable, although my entertainment system failed a couple of times. The real problems, however, started above Dulles Airport. Heavy turbulence hampered the landing, forcing the pilot to pull out and try again. The roller coaster-like movements of the plane stimulated some passengers to have another look at their dinner (in other words, they had to vomit). I managed to keep my stomach steady but left the plane with slightly less color in my face.

Sunday 26th of February

After a well-deserved sleep in a cozy bed-and-breakfast, we headed to the center of Washington DC. This day was reserved for only one purpose: being a tourist. We rushed from one historical monument to another. Here is an overview of some places.

20170226_091611.jpg
Washington Monument
20170226_094623.jpg
Lincoln Memorial
20170301_105714.jpg
The White House

At the end of the day, I dropped my girlfriend of at the airport from where she took a taxi to Front Royal, Virginia. This remote place would be the scenery of the statistics course. After saying goodbye, I headed back to the center of Washington. A new adventure was awaiting me: my first couch surfing experience! For those of you who don’t know what couch surfing entails: it is a large social network for travelers to stay at someone’s home without any costs. Traditionally, you sleep on the couch. I met my host, Graham Cole, at the McDonald’s in Silver Spring. We did not eat there (Graham doesn’t like ‘that crap’), we just needed a place to meet. We walked to his place where we watched the Oscar’s. The jetlag was taking its toll so I decided to hit the sack. I prepared my bed (read: couch) and dozed off.

20170226_235343.jpg
My bed / couch at Graham’s place

The next morning I woke up early (damn jetlag!). And Graham prepared a delicious breakfast with Belgian waffles. I was ready for the next phase of my visit to Washington: meeting fellow scientists at the museum. You can read all about that in Part 2: Science!